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We present some numerical results obtained from a simple individual-based model that describes clustering
of organisms caused by competition. Our aim is to show that, even when a deterministic description developed
for continuum models predicts no pattern formation, an individual-based model displays well-defined patterns,
as a consequence of fluctuation effects caused by the discrete nature of the interacting agents.
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I. INTRODUCTION

Birth and death processes are two of the most relevant
characteristics of the dynamics of biological populations and
can be responsible for the emergence of stable spatial pat-
terns �1�. In fact, the intrinsic asymmetry in the nature of
birth and death processes can enhance small initial differ-
ences in the spatial population density and lead to the forma-
tion of structures �2–4�. These clusters are resistant to some
levels of diffusion and emerge as soon as the birth of new
individuals outcompetes their movements. For this reason,
simplified models combining birth and death processes with
Brownian movement are able to describe aggregation of in-
dividuals �5�.

Another central ingredient, present in ecological systems,
that can cause the generation of spatial structures is the com-
petition for resources �6–8�. Different individuals struggle
for nutrients with a competition strength directly dependent
on the individuals’ spatial density within the competing
range. Reproduction and/or death rates depending on the
number of individuals in the surroundings can represent this
kind of interaction. This feature has attracted the interest of
experts from a variety of fields, ranging from pure math-
ematics �9� and nonlinear physics �10–15� to population bi-
ology �16,17� and theoretical studies in evolutionary theory
�18–23�. In addition, similar behaviors can be found in
physical systems, such as, for example, in mode interaction
in crystallization fronts �24� and in spin-wave patterns �25�.
It is remarkable that the structured state generated by this
kind of frequency-dependent interaction exists only for some
specific form of the interaction �22� and is reached through a
transition in the parameter space. This transition �segregation
transition �10�� drives the steady state of the system from a
spatially homogeneous distribution to one marked by some
clearly distinguishable inhomogeneities.

All these models, characterized by diffusion effects and
an implementation of frequency-dependent birth and death
processes, permit multiple interpretations.

In a common interpretation the system space directly rep-
resents the physical space where the organisms live and the
diffusion represents their spatial movement. Competition be-

tween individuals corresponds to a mechanism of growth
control caused by limited common resources. In this case,
pattern formation can reproduce the evolution of bacterial
colonies �6�, plankton concentration �5�, development of
vegetation �8�, or spatial distribution of predators �7�.

On the other hand, a different interpretation enables us to
describe the speciation process: the generation of two differ-
ent species starting from one single continuous population of
interbreeding organisms. To be specific, we can describe the
speciation process by representing all the phenotypic charac-
teristics that determine the biological success of an indi-
vidual by a number, the strategy value, that labels each indi-
vidual. By reproduction, which includes a mutation process,
an offspring inherits a strategy that slightly differs from that
of its parent. In order to model natural selection, a frequency-
dependent mechanism that mimics competition completes
the ingredients necessary for the emergence of population
clustering. In this scenario, the generation of a new cluster is
interpreted, in a broad sense, as a speciation event. Now, if
the model space represents the mentioned strategy space and
the diffusion models the mutation process during reproduc-
tion, we can identify the mechanism of growth control with
natural selection and the branching events with the specia-
tion process. This different interpretation justifies the anal-
ogy between a model that describes the speciation process
and the ones that describe spatial pattern formation in the
evolution of bacterial colonies, vegetation, or predation.

We must remember that, since this model does not include
sexual reproduction, we are describing trait divergence in an
asexual population, rather than speciation. Anyway, apart
from effects strictly related to sexual reproduction, the dy-
namics characterized by the individuals’ diffusion from re-
gions of low viability in favor of more viable ones is the
essential core of these two phenomena. A detailed and moti-
vated discussion of these processes can be found in Refs.
�18–23�.

We can describe such processes starting from an
individual-based model, which yields information on the be-
havior of a finite system �finite population� and accounts for
fluctuation effects caused by the discrete nature of the inter-
acting agents. Another approach, that neglects fluctuations,
describes individuals just with the use of a field that repre-
sents the population density at each position in space over
time. This method, usually called the continuous mean-field*edgardo@if.uff.br
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description �15,26�, becomes exact in the infinite-size limit if
fluctuations are small compared to averages �4�. Note that we
are not making a mean-field approximation in the nature of
the interaction �see, for instance, Ref. �27��, which, in our
model, is local and different for each individual.

Choosing this second strategy, the generalization of a
well-investigated equation �Fisher-Kolmogoroff-Petrovsky-
Piscounoff �28�� is quite common at present. In addition to a
diffusion process with coefficient D and a population growth
mechanism �rate a�, this equation incorporates a growth-
limiting process controlled by the parameter b �11,12,14�:

���x,t�
�t

= D�2��x,t� + a��x,t� − b��x,t��
−�

+�

��y,t�F�x,y�dy ,

�1�

where � is the density of individuals at position x and time t.
Competition is obtained by varying the death probability for
each individual, and is controlled through the influence func-
tion F�x ,y�. Let us focus on the shape of the influence func-
tion: it can range from a simple boxlike function to a glo-
bally uniform interaction. However, the Gaussian function
should be considered particularly relevant. If, for instance,
we need to represent the activity of a sedentary animal, the
interaction represented in the influence function should take
into account the individual’s daily excursion around the fixed
breeding site, which can be represented by Brownian motion
and, for this reason, by a Gaussian distribution. In the same
way, if we want to represent the habitat degeneration induced
by the growth of a colony of plants �29�, we can think that
the colony is originated by a single individual that disperses
its seeds in a way also well described by Brownian motion.
More generally, for a biological interaction that does not stop
at some defined length �presence of a cutoff�, and that is
nonlocal and controlled by a purely stochastic process, the
Gaussian function should be the most natural choice. On the
other hand, this choice is a source of complications. Deter-
ministic descriptions, in the case of a Gaussian influence
function, predict no pattern formation �12,30�. However,
such descriptions do not take into account fluctuations aris-
ing from the discrete character of individuals. The impor-
tance of these fluctuations has been recently pointed out in a
quite paradigmatic example, where random-walking organ-
isms that reproduce and die at a constant rate spontaneously
aggregate �2–5,31�.

The deterministic approximation is not able to show this
behavior, and is incapable of capturing the essential asym-
metry between birth, a multiplicative process that increments
the density in the regions adjacent to the parent, and death
events, which occur anywhere. Even when the patterns can
be obtained within the deterministic description, a recent
work outlines the importance of fluctuations by showing
their impact on transition points and amplitudes �14,32,33�.

In this work, we present some numerical results obtained
by means of a simple individual-based model. Our aim is to
show the appearance of a segregation transition in a model
where the deterministic instability, produced by the nonlocal
interaction, is not sufficient for generating inhomogeneities
�12�, but the superimposed microscopic stochastic fluctua-

tions permit the emergence of patterns. Moreover, we com-
pare the model implementation in the strategy space with the
implementation in the physical space. In the first, used to
characterize the speciation process, diffusion corresponds to
a mutation phenomenon, operating just one time in each in-
dividual’s life. In the second, directly related to the reaction-
diffusion equation �Eq. �1��, diffusion describes a typical
Brownian motion.

The paper is organized as follows. The next section de-
scribes the model used in our simulations. Section III shows,
for specific values of the parameters, the emergence of spa-
tially inhomogeneous steady states. In Sec. IV we prove that
these patterns are not caused by some finite-size effect. Sec-
tion V is devoted to illustrate the segregation transition and
general conditions that allow spatial segregation of arbitrary
wavelengths. In Sec. VI we describe, in the light of the ex-
isting literature, the cluster size dependence on diffusion rate
and population size and give some hints related to the behav-
ior of fluctuations. Conclusions are reported in Sec. VII.

II. THE MODEL

The simulations start with an initial population of N0 in-
dividuals located along a ring of length L, i.e., we take peri-
odic boundary conditions. At each time step, our model is
controlled by the following microscopic rules.

�1� Each individual, characterized by its position x, dies
with probability P,

P = K�
j=1

N���

exp�−
�x − yj�2

2C2 � , �2�

where N��� is the total number of individuals at the actual
step � and yj is the respective individuals’ positions. The
distance between two individuals is obtained by taking the
shorter distance on the ring. The strength of competition de-
clines with increasing distance according to a Gaussian func-
tion with deviation C. The parameter K depicts the carrying
capacity.

�2� If the individual survives this death selection, it repro-
duces. The newborn, starting from the parent’s location,
moves in a random direction a distance obtained from a
Gaussian distribution of standard deviation �. This change
represents the effect of mutations in the offspring phenotype.

As soon as all the individuals have passed the death se-
lection and eventually reproduced, the next time step begins.
This model implementation is analogous to the diffusion pro-
cess described by Eq. �1�.

To establish a more direct comparison between that mean-
field description and the individual-based simulation, we
have also implemented the model with an exact microscopic
representation of the diffusion term. In this case, at any given
time step, we perform first a loop over all particles where
individuals move some distance, in a random direction, cho-
sen from a Gaussian distribution of standard deviation �. At
the end of this loop, a second one starts, where �1� each
individual with strategy x dies with a probability obtained
from Eq. �2� and �2� if the individual survives the death
selection process, it reproduces and the newborn maintains
the same location as the parent.
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If, in Eq. �1�, we measure time in units of the simulation
time step, the coefficient D is related to our simulation pa-
rameter through D��2. The influence function is given by a
Gaussian of standard deviation C and the effective growth
rate is 1− P, with P given by Eq. �2�. This nonconstant
growth rate can be represented by Eq. �1� for a=1 and the
frequency-dependent part included in the integral term �see
Ref. �14��.

Essentially, the only difference between these two ver-
sions of our model is that, in the first one, individuals move
only at birth, while in the second version they can move at
every time step throughout their life. Since the death prob-
ability, at equilibrium, is approximately 1/2, usually, in the
second version, an individual will move between one and
two times during its entire life. For this reason, there should
be no relevant differences in the qualitative behavior of the
two model implementations. As shown by the measures re-
ported in Sec. IV, the only significant effect is the appearance
of slightly wider distributions.

III. MODULATION

In the following we present some typical examples of
steady states generated by the dynamics of the model that
clearly show the emergence of patterns for some specific
values of the parameters.

For a global competition that is extremely long ranged
�large C values, in relation to the values of parameters � and
K�, the steady state is characterized by a spatially homoge-

neous occupancy. If the � value is sufficiently large or/and
the K value sufficiently small, totally homogeneous distribu-
tions are obtained �Fig. 1�, otherwise the solution is smooth
but with the population concentrated in one region of the
ring, with its width controlled by �.

As stated above, a simple heuristic analysis of Eq. �1� in
the Fourier space shows that there is a necessary condition
for the emergence of inhomogeneity: the Fourier transform
of the influence function must have negative values and large
enough magnitude �12,13�. A Gaussian in an infinite domain
has a positive counterpart in Fourier space and so does not
match such requirements. In contrast with these results, the
fluctuations present in our individual-based model excite one
specific mode, and modulations of this wavelength appear.
The tuning of the parameters allows modulations of arbitrary
wavelengths �Fig. 1�.

When C is decreased, the competition between modes be-
comes stronger and no single mode dominates. In this situa-
tion, some small regions of the ring are occupied, forcing all
the remaining areas, up to some range, to be nearly empty.
The landscape becomes populated by several living colonies
divided by dead regions. There is almost no competition be-
tween individuals of different colonies and the space sepa-
rating them can be identified with an effective interaction
length. This steady state �spiky state �10�� corresponds to a
sequence of isolated colonies �spikes� and, seen in the Fou-
rier space, many active wavelengths contribute to it �Fig. 2�.

(a)

(b)

FIG. 1. Homogeneous �top, C=4.0, 1 /K=80 000, �=0.01�
and modulated �bottom, C=0.9, 1 /K=18 000, �=0.01� steady
state distributions. The insets show the structure functions S�q� of
the corresponding simulations. We show the distributions at time
step 1000, whereas the structure functions are averaged over 500
time steps.

(a)

(b)

FIG. 2. Spiky �top, C=0.059, 1 /K=500, �=0.001� and homo-
geneous �bottom, C=0.005, 1 /K=500, �=0.001� steady states. The
insets show the structure functions S�q�. We show the distributions
at time step 2000, whereas the structure functions are averaged over
1000 time steps. The transition between these two states, in this
typical range of parameters, has been extensively studied.
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Finally, for extremely short-ranged competition, in rela-
tion to the � value, no collective cooperation between differ-
ent excited modes emerges and a noisy spatially homoge-
neous distribution appears �Fig. 2�.

We describe these paradigmatic steady states of the sys-
tem by characterizing the related spatial structure with the
help of a structure function S�q� �14� defined as follows:

S�q� =	
 1

N�t� �j=1

N�t�

exp�i2�qxj����
2�
T

, �3�

where the sum is performed over all individuals j with their
positions determined by xj���. Note that, for convenience, the
structure function is calculated only over the closed interval
�0,L�. The function is averaged over some time interval T in
order to avoid noisy data. S�0� corresponds to the square of
the mean number of individuals in the system. The maxima
of S�q� identify the relevant periodicity present in the steady
state. We will see that the position of the global maximum
�qM� provides an appropriate order parameter for the identi-
fication of the segregation transition.

In our study we explored two different initial conditions
�ICs�. In the first �local ICs�, the colony is located in a finite
and compact region of the space. In the second �global ICs�,
the individuals are spread all over the space. The final distri-
bution is independent of this choice and, generally, local ini-
tial conditions make the system reach the steady state more
slowly. For this reason, if not differently specified, our re-
sults are obtained from global initial conditions.

IV. FINITE-SIZE EFFECTS

Our analysis starts by exploring the model dependence on
the space size L. The reason for such interest is given by the
necessity of testing whether the pattern formation is not
merely a product of some finite-size effect. This is important,
in the light of what was reported by Fuentes et al. in Ref.
�12�. In their work, a numerical solution of Eq. �1� with a
Gaussian influence function showed a segregation transition.
But this transition was just the effect of the finite domain
size, which acted like a cutoff for the Gaussian. Evidence of
this interpretation came from the observation that the ampli-
tude of the pattern depended on the ratio of the standard
deviation of the influence function to the domain size—the
critical values of the standard deviation corresponding to the
segregation transition depended linearly on the domain
size—and the same patterns appeared for a modified Gauss-
ian, which vanishes abruptly beyond a cutoff.

The study of our individual-based model gave different
results. By running some simulations with exactly the same
parameters but changing the ring extension, we were able to
show that the system is not influenced by the domain size. If
we choose data from spiky steady states, which permit clear
quantitative measures, it is possible to remark that the gen-
eral morphology of the patterns does not change on increas-
ing the L value. In fact, both the population density and the
mean number of peaks per space interval remain constant.
Moreover, in order to provide a more precise test of possible
small variations in the distribution, we measured the cluster

size. This quantity was calculated by evaluating the standard
deviation ��x2i− �xi

2�1/2 of the position of the i individuals
confined in each peak, then averaged over the different peaks
present at step �, and, finally, averaged over many time steps
after the system has reached the steady state.

Varying the system size caused no changes in the clusters
size �see Fig. 3�. From this result, we concluded that the
general aspect of the steady state does not change with L. In
particular, in contrast with what happens when the mean-
field equation is solved numerically, the patterns do not de-
pend on the ratio C /L. For example, for C=0.2 and L=50 we
obtained a spiky steady state; for C=0.004 and L=1 �same
ratio� we obtained a homogeneous steady state. Taking into
account these results, from now on, all our simulations are
implemented on a ring of size 1.

We have just shown how the average of the population
size �N scales with L in the steady state. Now, we will give,
through a simple heuristic argument, an estimation of �N as
a function of the parameters K and C, which will be useful
also in the rest of our analysis.

FIG. 4. The number of individuals N present in the steady state
is proportional to �CK�−1. This result is in accordance with the one
obtained for a box-type influence function of length C �see Ref.
�32��. We present data for different simulations with
1 /K� �50,500� and �� �0.0001,0.01�. This last parameter does
not influence the final number of individuals. The dashed line has
slope −1.
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FIG. 3. Dependence of the cluster size on the ring size L. We
present data from the model with mutation �triangles� and from the
one that implements diffusion �circles�. C=0.2, K=0.0029, �
=0.001. The average is carried out over all the clusters present at a
given time step and over different time steps.
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We can assume that, locally and in the steady state, the
number of deaths must be, on average, compensated by the
number of newborns, in order to comprise a stable popula-
tion. For this reason, the death probability P must equal 1/2.
Assuming that the number of neighbors that compete with a
single individual are the ones living up to a distance C and
that, in these surroundings, the average density N /L can be
considered to be uniform, P reduces to K�2C�N /L. Thus,
N�L / �CK�. Looking at Fig. 4, we can see that this crude
evaluation,which neglects diffusion and inhomogeneity and
reduces the influence function to a box, describes well the
general behavior of the data obtained from our simulations.

V. SEGREGATION TRANSITION

In the previous sections, we supported the fact that steady
states, depending on the parameter values, can assume inho-
mogeneous spatial distributions. Now, we will try to describe
the transition toward these states �segregation transition�.
The structure function introduced in Eq. �3� provides a
proper order parameter to describe this transition. Different
regions in the parameter space, coinciding with different
steady states, correspond to different positions of the global
maximum �obviously we are not taking into account S�q� at
q=0� of the structure function. The transition from a homo-
geneous to an inhomogeneous distribution �see Fig. 2�
matches the jump of the position of the global maximum
�qM� to a clear integer value, corresponding to the number of
clusters present in the space. For this reason we can charac-

terize the transition by looking at the shape assumed by S�q�,
or looking at the value of qM. If the space is homogeneously
occupied, the structure function does not present an integer
maximum. On the contrary, the maximum is located at qM
�1.4. This value corresponds to a uniform distribution of
individuals in the interval �0,1�, approximated by the expres-
sion ��0

1exp�i2�qx�dx�2. The segregation transition is charac-
terized by the passage of qM from 1.4 to an integer value as
soon as a modulation becomes dominant. In Fig. 5 we show
qM as a function of C, varying K and �. First of all, from the
analysis of these data, we can observe that the number of
clusters scales as C−1 �or, equivalently, the periodicity of the
inhomogeneous phase has wavelengths proportional to C�.
Moreover, a critical value of C exists for which the transition
takes place. This Ccrit grows with 1 /K and with �. An analy-
sis of the available data suggests the possible dependence:
Ccrit��2/3K−1/3. Finally, for larger values of the parameter C,
in this range of the parameters � and K, the distributions are
characterized by just one peak.

For any value of the competition strength, as can be seen
in Fig. 6, there exists a critical value �crit, dependent on C
and K, above which no spatial structures emerge. Another
measurement, which permits us to state this relation in a
different and clearer way, is presented in the next section.

VI. CLUSTER SIZE AND FLUCTUATIONS

In the following we describe, in the light of the existing
literature, the cluster size dependence on diffusion rate and
population size for the two different implementations of the
model.

We start by analyzing the typical size S of the clusters that
appear in the spiky phase. The data in Fig. 7 show a depen-

(a)

(b)

FIG. 5. Segregation transition at Ccrit. Upper figure: variation in
dependence on K, where 1 /K=50,150,400,500, and �=0.001.
Lower figure: variation in dependence on �, where �
=0.0005, 0.001, 0.002, 0.005, 0.01, and 1 /K=200.

(a)

(b)

FIG. 6. Showing the existence of a critical � value above which
no spatial structures emerge. Upper figure: variation in dependence
on C; we set 1 /K=100. Lower figure: variation in dependence on
K; we set C=0.01.
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dence of the cluster size on the diffusion coefficient S��,
equivalent to S��D. These results are in accordance with the
data presented in Ref. �33�, obtained from an individual-
based model. In addition, this work pointed out how this
behavior deviates from the conclusions obtained from the
deterministic approximation, where the cluster size was only
weakly dependent on the diffusion coefficient, another fact
supporting the relevance of fluctuation effects in these sys-
tems.

We can easily interpret the dependence of the cluster size
on the diffusion coefficient by assuming that the individuals
confined in a cluster diffuse a distance proportional to �DJ,
where J is the number of jumps the individual performs in its
life. In the case of the first implementation of the model,
where the diffusion is due to the mutation process, J is ob-
viously 1. Similar results are obtained with the second imple-
mentation �see Fig. 7�, apart from a slightly wider cluster
size �in this case, individuals move, on average, more than
just once during their lifetime�. Even so, the data show the
same dependence on the diffusion coefficient.

Finally, we present S as a function of K: S��1 /K. The
reasons for this behavior are already explained in Ref. �34�:
the cluster size is not controlled just by the single individu-
al’s number of jumps; in fact, the diffusive process continues
with its descendants. For this reason, it is proportional to the
mean lifetime of a family, estimated to be proportional to K−1

�see Ref. �34� for details�.
We introduce a quantity that is useful for describing the

existence of a critical diffusion value, giving an estimation of

its dependence on other parameters and a confirmation of
previous results. This quantity, which we call the mobility
M���, estimates the mean mobility of individuals. At a given
time step �, we choose an individual i. Then we look for the
closest agent, among all the population, at time step �−1. We
identify as di the distance between these two individuals.
Averaging over the entire population N���, we obtain

M��� =
1

N��� �
i=1

N���

di. �4�

The values assumed by M on varying the parameters � and
C are shown in Fig. 8. It is easy to distinguish two clearly
different behaviors. If the system is organized in a spiky state
�when ���crit�, M�����. M is another way of measuring
the mean distance that an individual moves during its life-
time inside the region defined by the cluster. For this reason,
this measure is coherent with the data obtained from the
direct evaluation of the standard deviation of the clusters. In
contrast, when the system is organized in the homogeneous
phase �when �	�crit� M becomes independent of � and is
proportional to the inverse of the occupation density M���
�KC. The values of the mobility obtained from simulations
with different values of C and K can be easily collapsed into
one function �see the inset of Fig. 8�. The collapse is per-
formed using the scaling �→� /C�K. This indicates that the
characteristic value of the crossover, �crit, that separates the
two different behaviors of M��� scales as

�crit � C�K . �5�

We conclude our study with some measurements trying to
catch some properties of the system fluctuations. First, we
estimated the fluctuations of the total population, averaging
over different simulations. The variance turned out to be con-
stant throughout the time evolution and of the order of the
square root of the total population. The mechanism of auto-
regulation of the population dimension does not allow the
growth of big differences in the total number of individuals.

For this reason, we focused our attention on the spatial
distribution of the population and tried to measure some
properties of these fluctuations. We studied the variation of
the local number of individuals in the same simulation, for
different times. We analyzed the evolution of the system

(a)

(b)

FIG. 7. Top: Cluster size as a function of �; 1 /K=300. The
solid line has slope 1. Bottom: Cluster size as a function of 1 /K;
�=0.0001. The solid line has slope 1/2. Triangles represent data
from the simulations where diffusion is implemented through mu-
tations, circles for the direct implementation of the diffusive pro-
cess; we set C=0.09.

FIG. 8. Mobility dependence on the diffusion parameter � for
different C values; K=0.01. In the inset, the data collapse for arbi-
trary values of the parameters C and K.
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starting from local initial conditions, with the population
concentrated in the interval �0.49,0.51�. In this situation, the
system evolves in time with a small cluster fluctuating
around the initial space interval. This situation changes when
a branching event occurs that generates two well-defined
clusters. Our interest is in showing the behavior of local
space fluctuations and capturing possible variations in corre-
spondence with the branching event. First of all, we looked
at the mean value of the spatial local fluctuations Fs���, de-
fined as Fs���= �� j=1

b f j
2�1/2, where f j is the occupancy varia-

tion of the bin j from time step �−1 to time step �. We
performed the average over all b bins in the ring and ob-
tained Fs���=�N���, with no relevant variations throughout
the time evolution, even in the time interval corresponding to
the branching event. More interesting is the shape of the
frequency distribution of the size of f j. In fact, a simple
Gaussian does not fit this distribution, which presents ex-
tended tails �see Fig. 9�. Throughout the system time evolu-
tion, the shape of the normalized distribution is conserved.
For global initial conditions, the same frequency distribution,
with extended tails, is recovered at the steady state. It is
identical to the one obtained with local initial conditions and
measured at the steady state. We think that the deviation of

the distribution from a Gaussian can be considered as a hint
that fluctuations play a relevant role in the dynamics of the
systems.

VII. CONCLUSIONS

We presented some results regarding clustering of organ-
isms caused by a frequency-dependent interaction that repre-
sents competition. We showed how this way of modeling
competition can be used not only to describe spatial phenom-
ena in population biology, but also, through a more abstract
interpretation, to test ideas of evolutionary theory �for ex-
ample, studying the speciation process�.

From this unifying perspective, our study, obtained from
an extensive collection of data coming from simulations of
an individual-based model with global competition, pointed
out the relevance of fluctuation effects in pattern formation.
For the influence function adopted, the mean-field descrip-
tion predicts the absence of spatial structures. On the con-
trary, fluctuations are able to excite the emergence of well-
defined patterns, which cannot be generated from a
deterministic instability.

Furthermore, we discussed other fundamental properties
of our model in the light of the existing literature, unfolding
a comparison with other models that describe spatial segre-
gation originated by some deterministic instability. We
showed that the observed patterns are not due to a finite-size
effect, we characterized the behavior of the segregation tran-
sition in various regions of the parameter space, and we stud-
ied the existence of a critical diffusion value. We analyzed
the dependence of the cluster size on the diffusion coefficient
and pointed out some characteristics of the fluctuations of the
system.
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